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good apart from some 6-8 % of the tetrahedra in the 
regions where the individual 26-atom clusters pack to- 
gether. 

These results (together with those for c~- and fl-Mn, 
also considered as examples) indicate that the coor- 
dination polyhedra need not be completely inter- 
penetrating (as in structures such as the Friauf-Laves 
phases, a, fl-W etc.) in order for a structure to achieve 
an approximation to hypothetical packing of regular 
tetrahedra to fill space. 

The authors are grateful for support provided by the 
National Research Council of Canada. 
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Theory of X-ray Diffraction from Stacking Faults and Antiphase Domain Boundaries in 
the DO~9-Type Ordered H.c.p. Structures 
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The mathematical theory of X-ray diffraction from stacking faults and antiphase domain boundaries 
on the basal plane in the DO19-type ordered hexagonal close-packed structures, exhibited notably by 
Mg3Cd and Ti3AI, has been worked out. In all, seven cases have been considered. There are generally 
two kinds of diffraction effect obtained, namely the changes in the integrated intensities and the broaden- 
ing of the reflexions. 

Introduction 

The first mathematical formulation of the theory of 
X-ray diffraction from antiphase domain boundaries 
(APDB's) was carried out by Wilson (1943) (see also 
Wilson & Zsoldos, 1965) in the ordered face-centred 
cubic (f.c.c.) structure of the type L12, a notable ex- 
ample of which is Cu3Au. Further extensive X-ray 
work on CuaAu has been done by Cohen and his co- 
workers (see Mikkola & Cohen, 1965, 1966). Roth- 
man, Merion & Cohen (1969) worked out the theory 

of X-ray diffraction from stacking faults (SF's) and 
APDB's in the Bz-type body-centred cubic (b.c.c.) 
structure. In the following is given the theory of SF's 
and APDB's in another important structure, the 
hexagonal close-packed (h.c.p.) structure of the type 
D019, exhibited notably by Mg3Cd and TiaA1 (Fig. 1). 
After Lele (1969) and Prasad & Lele (1971) the method 
has been considerably simplified. In general, these 
'faults' affect the reflexions in two ways" by changing 
the integrated intensities and by broadening the re- 
flexions. Reflexions with H -  K = 3 N  and L = 2 N +  1 
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are absent in both the normal and the superlattice 
cases. The formulation of the theory is subject to the 
following assumptions: 

(1) The probability of occurrence of 'faults' is small 
(usually only these values are of physical significance 
and the assumption obviates consideration of simul- 
taneous occurrence of the faults). 

(2) The crystal is infinite and free of distortions. 
(3) q-he scattering power is same for all the close- 

packed layers. 
(4) There is no change in the lattice spacing at the 

faults. 
(5) The faults are distributed at random. 
(6) The faults extend over entire domains. 

General expression for the diffracted intensity 

In terms of the hexagonal basis vectors AIA2A 3 (double 
the lattice vectors of the disordered lattice) the position 
vector of the atom at the (mlm2) position in the m3 
layer of a (possibly faulted) h.c.p, crystal (with SF's 
and APDB's) is given by 

R m  = mlA1 + m 2 A 2  + l m s A 3  + rqma , (1) 

/ 
Z m 

/ / \  

/ \ 2 \  / 
A~ 

~ I  - . . -~ A = 

. /  
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/ 

I -Cd , /7,1]I~I~- M) 

Fig. 1. Unit cell for the ordered h.c.p. DOtg-type structure. 
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Fig. 2. Basal plane representation of atoms in the three layers 
A,B,C and the translations of the B layer in its own plane 
for all the seven kinds of fault. 

where r is the displacement vector given in Table 1 for 
all the seven types of SF's and APDB's possible on the 
basal plane and %3 is a stochastic variable taking the 
values 0, + 1, + 2, etc. In Fig. 2 are given the arrange- 
ment of the atoms in the basal plane and the various 
glide vectors. The diffracted intensity from one crystal 
is given by the usual double sum (Warren, 1969): 

o r  

I(hlhzh3)=I~F2 ~ ~m' exp [i2n S~--S--° ( R m - R m , ) ]  

. 4 - o o  

I ( h 3 )  = ~¢2 
F t l =  ~ o o  

exp [inmh3J(exp [i~)m]) , (2) 

where S -  S0/2 =hlB1 + h2B2 q- h3B3 and BIBzB3 are 
reciprocal-lattice vectors; ~2 is a function of hi and h2, 
zero everywhere except when hi - - H  and h 2 = K, where 
H and K are integers; ~m is the phase difference be- 
tween the X-rays diffracted from the mth layer and the 
origin layer and is given by 

~m= 2-~ (S--So).r(qm3--qm]) = - 2 ~ ( S - S 0 ) . r q m  

and F, the structure factor needs to be evaluated 
separately for different refiexions (Marcinkowski, 
1963). 

Table 1. Displacement vectors for faults 

r Nature of the fault 
ro= ½(A1-A2) 
rl = ~(AI-A2) SF+ APDB 
r2= ~(A1 + 2 A 2 )  SF+APDB 
r3= ~(2A1+A2)  SF+APDB 
r4 = --  ~(A1 --  A2) A P D B  
r5 = - ~(A1 + 2A2) A P D B  
r6 = -~(2A1 + A2) A P D B  
r7 = - •-(AI - A2) S F  

It is evident that the problem of determining the 
diffracted intensity reduces to finding the values of 
(exp [ibm]) in equation (2). Now this can be expressed 
a s  

(exp [i~m]) = ~ e(q~m) exp [i~m] = ~ e(m) exp [ibm] 
m m 

(3) 

where P(~bm) or P(m) is the probability of obtaining the 
phase difference ~m or of arriving at a layer m with the 
phase difference q~m. Fig. 3 shows the probability tree 
for an (m-1)- to-m layer transition with the Ao type 
layer at the ( m -  1) position. 

As can be seen, we can have at the ( m - 1 )  position 
any one of the four types of layer A0, BI, X0 and X~ 
where X0 and X[ denote any of the primed layers, 
singly or multiply primed. The layers are primed when 
after a fault the layer does not move into any of the 
three normal layer positions A, B, C. After a fault all the 

A C 31A - 6 
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layers are primed, which can be easily visualized from 
Fig. 2. But again after a fault of the same kind among 
the primed layers we are back with the unprimed layer. 
This is basic to our formulation of the problem. In 
Fig. 4 is given a complete set of probability trees for 
the case of S F + A P D B  of type 1 with the displacement 
vector r~. 

From these probability trees we can write down a 
set of difference equations in probabilities P(m,j) and 
P'(m,j) where m denotes the layer position and j the 
layer type, 0 or 1. 

P(m,O) = ( 1 - e t ) P ( m -  1 , 1 ) + 7 1 P ' ( m -  1,1) ] 
P(m, 1) = ( 1 - o q ) P ( m -  1,0) + . ~ P ' ( m -  1,0) l P'(m,O)=(1-cq)P'(m-l,1)+oqP(m-l,1) (4) 
P'(m, 1) = (1 - oq)P'(m - 1, O) + oqP(m - 1, O) . 

Now if equation (3) is written as 

(exp [i~m])=J(m,j)= ~. P(m,j) exp [iq~m]j, (5) 
j = 0 , 1  

we can get a set of difference equations in J(m,j) and 
J'(m,j) with the help of the Table 1 for r values and 
equations (4): 

d(m,O) = ( 1 - e l ) J ( m -  1,1) exp - i T ( H -  K) 

+oqJ'(m-l,1) exp [ - i  2-~-~ (H-K)] 

J(m, 1) = ( 1 - c q ) J ( m - l , 0 ) e x p  i - T ( H - K )  

+oqJ'(m-l,O) exp [i 2--~-~ (H-K)] 

J ' (m,0 )=  ( 1 - o q ) J ' ( m -  1,1) exp [ - i  2re y ( H - K ) ]  

[ i 2zc + oqJ(m- 1, 1) exp [ - y ( H -  K)] 

[ 2re ( H -  K)] J'(m, 1)=(a-oq)J'(m-l,O) exp i 

+ c q J ( m - l , 0 )  exp [ i  ~-~ ( H - K ) ]  

(6) 

where e=  exp[+i2-~(H-K)] .  

Expanding the determinant, we get from equation 
(7): 

04-  202[c~ + ( 1 -  0q)2] + ( 1 - 4  el +6e~) 

2~ ( H -  K ) = 0  (8) - 2c~ cos ~ -  

Equation (8) has the following four solutions: 

Case 1 : 

2~ (H-  K)= 1 H-K=3N,  cos ~ -  

0o=1,01= -- 1,02=(1-2~1),03= - ( 1 - 2 ~ ) .  (9) 

Case 2" 
27z ( H -  K ) =  - ½  H - K # ,  cos ~ -  

& = (1-½~),0~ = - (1-½cq) / 
02 = (1 --}cq), 03 = - (1 --}~1) / (10) 

Higher powers in cq are neglected. The same solutions 
are obtained for the rz and r3 cases as well. While for the 
r4, rs and r6 cases the solutions are 

& =  1,Q~= - 1 ,02=(1-2c0,0~= - ( 1 - 2 c 0 .  (11) 

The last case of the displacement vector r 7 is similar to 
the deformation faults in the disordered case and, after 

Fig. 3. Probability tree for 

(m- I ) Probability m r£ 

1-~ai 
i 

B 1 r 0 
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C~ r I 
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"C'~ r 2 
a3 C~" r 3 

A 6 , ~h  
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a6 

B~" r 6 

a T 
C I r 7 

an (m- 1)-to- m layer transition. 

I f  0 is the solution of this set of equations, then writing 

J(m,j)= CjQ" and J'(m,j)= C'jO', 

we get from equation (6) for non-trivial values of the 
C ' s :  

Q 0 - (1 - ~l)e *z -~ le*  
- (1 - ~ 1 ) ~  - ~ l e  Q 0 

0 Q - ~le* - (1 - ~l)e .2 
- ~ l e  - (1 - ~ l ) e  2 0 Q 

= 0  

(7) 

(m-1) Probability m (m-1) Probabil£ty m 

I - a ~ / B I  +ro- ~ A  0 

B I 

~ ~ . ~ . ~ - ~ B ~  +r O- 1-a I A~ 

C I +r I- C O 

Fig. 4. Probability trees for SF+APDB of type 1. 
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Warren (1969), the solutions of the characteristic equa- 
tion for them can be written down as 

~Oo= (1-{cq),  01-- - ( 1 - } ~ 7 )  • (12) 

Continuing with our analysis of the rl ease we now 
express (exp [i~m]) in terms of the O's as 

( e x p  [ i~m] )  = E cv0m'  v = 0 , 1 , 2 , 3 ,  (13)  
y 

where C~=C Ao ' " B l + c ' ~ o + C  v; " constants which v -t- L" v 

can be determined if we know the initial conditions for 
(exp [iq~m]) for m=0 ,  1,2,3 and also the probabilities 
of occurrence of the four types of layers at the origin. If 
Wo, W1, Wo, W'I are these probabilities then from Fig. 
4 we can write 

Wo=(1-~3W~+~lWi } 
Wl =(1 -~ l )  Wo+cq Wo 
Wo=(1-~0wi+~w1 
Wi = (1 - ~ )  Wo + ~ Wo 
W o + W o + W ~ + W ' ~ = l  • (14) 

These equations yield: 

Wo= W'o= WI= W'I= ¼ . (15) 

Following Fig. 4, we can write a four-layer sequence 
beginning with the four types of layers. From these we 
get the following four initial conditions: 

Jo = (exp [i~o1)= 1 

2~ ( H - K )  J l=(exp [ i~ l ] )=(1-cq)  cos -~- 

27r ( H -  K) 
+ ~1 cos - 6  

27r ( H -  K) J2= (exp [i(/)2])=(1-2al) +2~1 cos 

J3= (exp [i~0a]) = (1 - 3cq) cos ~ ( H - K )  

2~ ( H -  K) + ~1 cos ~ ( H -  K) +2~1 c o s ~ -  (16) 

In a similar fashion the J ' s  can be found for all other 
cases. For each reflexion of the type H - K = 3 N  or 
3 N + l  the values of the J ' s  are same but with 
added restrictions on the values which H and K take, 
these being different for different cases. These are" 

Case 1" H -  K= 3 N 

For these reflexions we have the following two sub- 
cases with further restrictions on the values of H and 
K as given for each case: 

(a) (i) rl and r4: Neven; (ii) r2 and rs" H +  2K= 6M 
(iii) r3 and r 6" 2 H +  K =  6M 
(iv) r7: this fault does not affect these reflexions. 

The J ' s  are" 
J o = J l = 4 = J 3 =  1. (17) 

The constants C are given by 

Co = 1, C1 = (72 = C3 = 0.  (18) 

(b) (i) rl and r4: N odd; 
(ii) rz and rs: H + 2 K = 6 M + 3  
(iii) r3 and r6: 2 H + K = 6 M  +3 
(iv) r7: this fault does not affect these reflexions. 

The J ' s  are: 
Jo= 1 , J l=  1-2c~, } 
Jz= l -4o~,J3=1-6c~ (19) 

The constants C are given by 

Co= C1= C3=O, C2=1. 
Case 2: H - K = 3 N +  1 

(20) 

Further restrictions on the H and K values give the 
following sub-cases" 

(a) (i) rl: N even; (ii) r2" H +  2K= 6M + 1 
(iii) r 3 • 2 H +  K = 6M + 1. 

The J ' s  are: 
Jo= 1,Jx = - ½ ( 1 - 2 a )  } 
J 2 = ( 1 - ~ ) , J 3 =  - ½ ( 1 - 3 ~ ) .  (21) 

The constants C are: 
Co=¼(1+3~), C1=¼(1-½~) ]. 
C 2 =  C3=0.  / 

(b) (i) rl" N odd; (ii) rz" H + 2 K = 6 N + 4  
(iii) r3: 2 H +  K =  6 M  + 4 .  

(22) 

The J ' s  are: 

2 o = 1 , 2 1 = - - ½  
Jz=(1 - 3~), J3 = -½(1 - 3c 0 

The constants C are: 
Co = C I = 0 , C  - 1  C - a  2 - - 4 ,  3 - - 4  • 

l J. (23) 

(24) 

(c) (i) r 4" N even; (ii) rs" H + 2 K =  6M + 1 
(iii) r 6" 2 H +  K =  6m _+ 1 . 

T h e  J ' s  are: 
Jo = 1,J~= - ½ ( I -  2~) 
J2 = ( 1 - 4~), J3 = - ½(1 - 600 

The constants C are: 
co= c1=o, c2= ¼, c3= k . 

(d) (i) r4: N o d d ;  (ii) rs: H + 2 K = 6 M + _ 4  
(iii) r6: 2 H +  K =  6M + 4 .  

The J ' s  are: 
Jo = l , J1  = - ½  [ 
J2= 1,J3= - ½ .  / 

. (25) 

(26) 

(27) 

A C 31A - 6" 
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The constants C are: 

Co=k,C~=k,c~=ca=o. (28) 

(e) r7: The J ' s  are: 

J0 = 1 ,Jr= - ½ .  (29) 

The constants C are: 

Co=¼(1-~2~), C~--a4(1 +½~). (30) 

Now we can get the value of (exp [i~bm]) from equa- 
tion (13) by substituting the values of the 0's and C's 
and, rewriting equation (13), we have 

t'-' ,~Iml (exp [i~m])= Co01o m[ + C1o[ ml + C2~12 ml + ~'-'3~3 , 

- c o < m <  + c o .  (31) 

Substitution of equation (31) in (2) gives the diffracted 
intensity in reciprocal space: 

I(h3) = Co~t 2 ~ 010 ml cos [mztha] 
+ C 1 v  2 ~ ( - 0 0  Iml cos [mn(h3-1)] 
+ C2~//2 E 0]2m] COS [mzcha] 
+ C3~b¢2 E (--03)[ml COS [mz~(h3- 1)], 
- c o < m <  + c o .  (32) 

The sine terms cancel in pairs. After the summation 
has been carried out, the diffracted intensity is given by 

Co(1-0 z) 
I(h3) = ~u 2 i - 20o cos zcha + 08 

+ v/2 [ C~(1-02) 
1 + 201 cos re(ha- 1) + 02 

C3(1-0]) ] 
+ 1 +203 cos zc(h3-1)+0] " 

C2(1-02) ] 
+ 1 - 202 COS ~zh3 + 0~ 

(33) 

The first two expressions in equation (33) are for re- 
flexions centred at L--0  rood 2 and the last two ex- 
pressions give the intensity centred at L = I  mod 2. 
From these we get the following expressions for inte- 
grated intensities (T) and the integral breadths (/3). 

Integrated intensities 

1. H - K = 3 N  

With the following further restrictions on the H and 
K values for the individual cases" 

(i) r2 and rs" H + 2 K = 6 M  and 6M +_ 3 
(ii) r3 and r 6" 2 H +  K =  6M and 6M +_ 3 

T0=2V 2, L = 0 m o d 2  ] 
7'1=0 , L = l m o d 2  J .  (34) 

2. H - K = 3 N  + 1 

Further restrictions on the values of H and K give 
the following cases" 

(a) (i) rl: N even; (ii) r2: H + 2 K = 6 M  + 1 
(iii) r 3 : 2 H +  K =  6 M  + 1 

To=½~,2(l+{~),  L = 0  mod 2 / 
7 ' I - - { V z ( 1 - ½ ~ ) ,  L - - 1  m o d 2  f .  (35) 

(b) (i) rt: N o d d ;  (ii) rz: H + 2 K = 6 M + - 4  
(iii) r3" 2 H +  K =  6M + 4 
(iv) rs: H +  2K= 6M + 1 and 6M +_ 4 
( V )  r6: 2 H +  K =  6M + 1 and 6M +_ 4 

To=½~ '2, L = 0 m o d 2  ] 
Tx = ~ b  ¢2 , L =  1 mod 2 f (36) 

(C) r7: 
T0=½V2(1-{~) ,  L = 0 m o 0 2  / 
TI=a2V2(I+½~), L = I  rood 2 ]'. (37) 

Integral breadths 

1. H - K = 3 N  

There are the following further restrictions on H and 
K values for some cases" 

(i) rz and rs" H + 2 K = 6 M a n d  6M +3 
(ii) r3 and r6: 2 H + K = 6 M  and 6 M + 3  

/30=2 ~, L = 0  mod 2 
/31=0, L = l m o d 2  / .  (38) 

2. H - K = 3 N +  1 

(a) (i) rl" N even; (ii) r2" H + 2 K = 6 M  + 1 
(iii) r 3" 2 H +  K =  6 M  + 1 

fl = ½ a, L = integer. (39) 

(b) (i) r~" N o d d ;  (ii) r2" H + 2 K = 6 M + 4  
(iii) r3" 2 H + K = 6 M  +_4 

fl=a2~, L=in tege r .  (40) 

(c) (i) r s ' H + 2 K = 6 M + I  and6M+_4  
(ii) r6" 2 H + K = 6 M +  1 and 6M+-4 

(d) rT" 

/3 = 2~, L--  integer. (41) 

fl0 = - ~ ,  L = 0 mod  2 / 
fll =½a,  L =  1 mod 2 ]'. (42) 

In an actual situation, however, the analysis for all 
these 'faults' would present some difficulty for two 
reasons: (i) the presence of small coherently diffracting 
domains and micro-strains within these and (ii) not 
enough reflexions being available. 
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The variance of diffractometer-collected diffraction intensities is discussed in terms of instrumental 
instability and uncertainties in the parameter used to bring the intensities to a common scale. It is 
shown that the inconsistent and]or divergent behavior of the reflections used as standards contributes 
in a major way to the uncertainty in the scaling parameter and can often account for the largest por- 
tion of the variance in excess of the Poisson contribution for reflections with large intensities. 

Introduction 

Intensity data from counter techniques are expected on 
theoretical grounds to follow the Poisson distribution. 
They should therefore have variances equal to the total 
counts in each measurement. It has been found, how- 
ever, that the variances of the measurements within a 
crystallographic data set are larger than the measured 
counts. At least three observations exist which support 
this statement: 

(I) Multiple measurements of intense reflections in a 
data set agree with each other less well than predicted, 
if considerable time elapses between measurements; 

(2) At convergence of least-squares refinement the 
observed and calculated data for the more intense re- 
flections disagree more strongly than one might predict 
using Poisson statistics, and; 

(3) the standard error of fit determined from least- 
squares refinement is usually greater than 1.0 if Poisson 
statistics variances are used. 
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Observation 3 is, of course, model dependent while 
observation 2 is at least potentially model dependent. 
The largest discrepancies, however, are commonly 
found among the more intense data. This distribution 
would seem to have sources other than the model. 
Many workers (e.g., Busing & Levy, 1957; Peterson & 
Levy, 1957; Stout & Jensen, 1968, p. 456) have included 
in the calculation of the variances, S z, of the intensity 
data, a term proportional to the square of total counts, 
T, or net counts, I: 

e.g., S2(I) = T+ p212. (1) 

The factor P has been termed the 'instability con- 
stant' by some workers and the 'ignorance factor' 
(Corfield, Doedens & Ibers, 1967) by others. It is 
common practice to use 0.01 to 0.05 for the value of P. 
The larger values are usually chosen for crystals which 
show marked decomposition. 

Several rationalizations have been advanced for the 
use of equation (1): 

(1) It reduces the weights used for intense reflections 
in least-squares refinement (but any factor which is an 


